검색창 닫기
[SNU GSAI Seminar 초대] Scaling deep reinforcement learning to challenging domains
  • 작성자곽주영
  • 날짜2021-02-23 17:07:03
  • 조회수232

서울대학교 협동과정 인공지능전공, AI연구원, 컴퓨터공학부에서 공동 주최하는 「SNU GSAI Seminar」 개최를 아래와 같이 안내드리니, 관심 있는 분들의 많은 참여를 바랍니다. 

주   제: Scaling deep reinforcement learning to challenging domains 
발표자: 이기민(Kimin Lee) a postdoc at UC Berkeley 
일   시: 2021.3.4.(목) 11:00 AM - 12:30 PM
장   소: 비대면
호스트: 컴퓨터공학부(협동과정 인공지능전공 겸무) 김건희 교수

Deep Reinforcement Learning (RL) has been successful in a range of challenging domains, such as board games, video games, and robotic control tasks. Scaling RL to many applications, however, is yet precluded by a number of challenges. One such challenge lies in improving the sample-efficiency of RL algorithms, especially when learning with high-dimensional inputs (e.g., pixels). For example, the state-of-the-art results with direct access to the state were two orders of magnitude more data-efficient than learning from pixels the standard DeepMind Control Suite benchmark. In this presentation, I will first introduce recent works for sample-efficient deep RL, including RAD (data augmentation), ATC (representation learning), and RE3 (exploration). Another challenge in scaling RL is providing a suitable reward function that is sufficiently informative yet easy enough to provide. For example, real-world problems may require extensive instrumentation, or it may be hard to reflect social norms in the hand-engineered reward function. To handle this issue, I will also introduce a new interactive framework, which enables us to utilize RL without a well-designed reward function. 

발표자 소개
Kimin Lee is a postdoc at UC Berkeley working with Pieter Abbeel. He is interested in scaling deep reinforcement learning to diverse and challenging domains — reinforcement learning from high-dimensional inputs, reward-free reinforcement learning, and unsupervised reinforcement learning. He received his Ph.D. from KAIST, where he worked a reliable and robust machine/deep learning with Jinwoo Shin. During Ph.D., he also interned and collaborated closely with Honglak Lee at University of Michigan. Several of his works have been presented as spotlight presentations at top-tier machine learning. 



현재 페이지에 대한 의견이나 수정요청을 관리자에게 보내실 수 있습니다.
아래의 빈 칸에 내용을 간단히 작성해주세요.